Министерство образования Российской Федерации Государственное образовательное учреждение Уральский государственный технический университет – УПИ

РАСЧЕТ НА УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ

Методические указания к выполнению контрольных заданий по курсу «Сопротивление материалов» для студентов всех форм обучения всех специальностей

УДК 539.3

Составители В.В. Чупин, Д.Е. Черногубов Научный редактор доц., канд. техн. наук А.А. Вознесенский

РАСЧЕТ НА УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ: Методические указания к выполнению контрольных заданий по курсу «Сопротивление материалов» / В.В.Чупин, Д.Е.Черногубов. Екатеринбург: ГОУ УГТУ–УПИ, 2001. 31 с.

Методические указания предназначены для студентов всех специальностей, изучающих курс "Сопротивление материалов". Содержат сведения из теории, примеры расчета, таблицы сортамента.

Библиогр.: 3 назв. Рис. 9. Табл. 1. Прил. 1.

Подготовлено кафедрой "Строительная механика".

© ГОУ Уральский государственный технический университет – УПИ, 2001

1. УСТОЙЧИВЫЕ И НЕУСТОЙЧИВЫЕ ФОРМЫ РАВНОВЕСИЯ

Из теоретической механики известно, что равновесие абсолютно твердого тела может быть устойчивым, безразличным и неустойчивым. Например, шар, лежащий на вогнутой поверхности (рис. 1,а), находится в состоянии устойчивого равновесия. Если ему сообщить небольшое отклонение от этого положения и отпустить, то он снова возвратится в свое исходное положение. Шар, лежащий на горизонтальной поверхности (рис.1,б), находится в состоянии безразличного равновесия. Будучи отклоненным от этого положения, он в исходное положение не возвращается, но движение его прекращается. Наконец, шар, лежащий на выпуклой поверхности (рис.1,в), находится в состоянии неустойчивого равновесия. Будучи отклоненным от первоначального положения, он продолжает двигаться дальше.

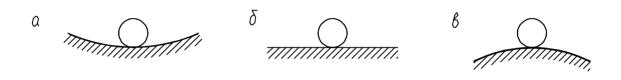


Рис. 1

Аналогичные примеры можно привести и из области равновесия деформирующихся тел.

Так, длинный стержень при действии сравнительно небольшой осевой сжимающей силы (меньше некоторого критического значения) находится в состоянии устойчивого равновесия (рис. 2, а). Если незначительно изогнуть его

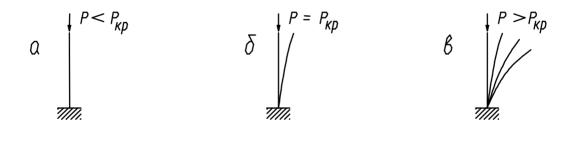


Рис. 2

какой-нибудь поперечной нагрузкой и затем эту нагрузку убрать, то стержень вновь распрямится, примет первоначальную форму равновесия. При значении сжимающей силы P, равном критическому значению $P_{\rm кp}$, стержень будет находиться в состоянии безразличного равновесия. Будучи незначительно отклоненным от первоначального прямолинейного положения и предоставленным самому себе, он останется в равновесии и в отклоненном положении (рис. 2, б).

И, наконец, если сила *P* станет больше критической, то прямолинейная форма равновесия стержня окажется неустойчивой (рис. 2, в). При силе, большей критической, устойчива криволинейная форма равновесия, но при этом стержень будет работать уже не на центральное сжатие, а на сжатие и изгиб. Даже незначительное превышение величины силы над ее критическим значением приводит к большим прогибам стержня и возникновению в нем высоких напряжений. Стержень либо разрушается, либо получает недопустимо большие деформации. В том и другом случае стержень практически выходит из строя, т. е. с точки зрения инженерного расчета критическая сила должна рассматриваться как опасная (предельная) нагрузка.

Таким образом, критическую силу можно определить как силу, при которой сжатый стержень находится в состоянии безразличного равновесия, другими словами, как силу, при которой возможна как прямолинейная форма равновесия стержня, так и близкая к ней криволинейная.

Рассмотренная схема работы центрально сжатого стержня носит несколько теоретический характер. На практике приходится считаться с тем, что сжимающая сила может действовать с некоторым эксцентриситетом, а стержень может иметь некоторую (хотя бы и небольшую) начальную кривизну. По этой причине с самого начала продольного нагружения стержня, как правило, наблюдается его изгиб.

Исследования показывают, что, пока сжимающая сила меньше критической, прогибы стержня будут небольшими, но при приближении значения силы к критическому они начинают быстро возрастать. Этот критерий (большое увеличение прогибов при малом увеличении силы) и может быть принят за критерий потери устойчивости.

Определив критическую силу, необходимо установить допускаемую нагрузку на сжатый стержень. В целях безопасности допускаемая нагрузка должна быть меньше критической:

$$[P] = \frac{P_{\rm KP}}{n_{\rm V}},\tag{1}$$

где n_{y} – коэффициент запаса устойчивости.

Величина коэффициента запаса устойчивости принимается такой, чтобы была обеспечена надежная работа стержня, несмотря на то, что действительные условия его работы могут быть менее благоприятны, чем условия, принятые для расчета (из-за неоднородности материалов, неточности в определении нагрузок и т.д.). При этом величина коэффициента запаса устойчивости принимается несколько большей величины коэффициента запаса прочности, так как учитываются дополнительные неблагоприятные обстоятельства: начальная кривизна стержня, эксцентриситет действия нагрузки и др.

Для стали величина нормативного коэффициента запаса устойчивости $n_{\rm y}$ принимается в пределах от 1,7 до 3, для чугуна — от 5 до 5,5 для дерева — от 2,8 до 3,2.

Потеря устойчивости упругого равновесия возможна также при кручении, изгибе и при сложных деформациях.

Исследования показывают, что потеря устойчивости была причиной многих катастроф и аварий конструкций.

2. ФОРМУЛА ЭЙЛЕРА ДЛЯ КРИТИЧЕСКОЙ СИЛЫ

Рассмотрим стержень постоянного поперечного сечения в слегка изогнутом состоянии под действием сжимающей силы P несколько большей критической силы $P_{\rm kp}$ (рис. 3). При шарнирном опирании концов стержня продольный изгиб произойдет в плоскости наименьшей жесткости, т.е. поперечные сечения стержня будут поворачиваться вокруг той оси, относительно которой момент инерции имеет минимальное значение $I_{\rm min}$. В этом легко убедиться, сжимая гибкую линейку.

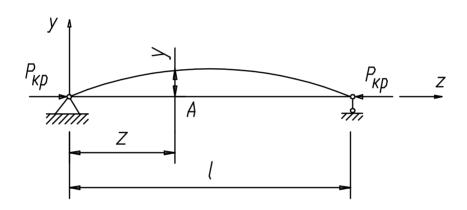


Рис. 3

Предположим, что деформации малые и критическая сила не вызывает в стержне напряжений, превышающих предела пропорциональности $\sigma_{\Pi II}$.

В связи с этим используем для изучения продольного изгиба и определения критической силы приближенное дифференциальное уравнение изогнутой оси балки:

$$EI_{\min} y'' = M_{\text{M3}\Gamma}. \tag{2}$$

Изгибающий момент относительно центра тяжести сечения A в изогнутом состоянии равен

$$M_{\text{M3}\Gamma} = -P_{\text{Kp}} y. \tag{3}$$

Знак минус берется потому, что стержень изгибается выпуклостью вверх, а ордината y положительна. Если бы стержень изогнулся выпуклостью вниз, то момент был бы положительным, но ординаты y были бы отрицательными, и мы

снова получили бы тот же результат (3). С учетом (3) уравнение (2) принимает вид

$$EI_{\min} y'' = -P_{KD} y$$
.

Обозначая

$$k^2 = \frac{P_{\rm Kp}}{EI_{\rm min}},$$

получаем

$$y''+k^2y=0.$$

Это линейное дифференциальное уравнение второго порядка. Его общее решение имеет вид

$$y = A\sin kz + B\cos kz, \tag{4}$$

где A и B — постоянные интегрирования, для определения которых используем известные условия закрепления концов стержня:

- 1) при z = 0, y = 0;
- 2) при z = l, y = 0.

Из первого условия получим B=0. Следовательно, стержень изгибается по синусоиде

$$y = A \sin kz$$
.

Из второго условия получим

$$A \sin kl = 0$$
.

Это соотношение справедливо в двух случаях:

- 1. A = 0. Но если A = 0 и B = 0, то, как следует из уравнения (4), прогибы стержня равны нулю, что противоречит исходной предпосылке.
- 2. $\sin kl = 0$. Это условие выполняется, когда kl принимает следующий бесконечный ряд значений:

$$kl = 0, \pi, 2\pi, 3\pi, ..., n\pi,$$

где n – любое целое число. Отсюда $k = \frac{n\pi}{l}$, а так как

$$k = \sqrt{\frac{P_{\rm Kp}}{EI_{\rm min}}},\,$$

то

$$P_{\rm Kp} = \frac{\pi^2 E I_{\rm min}}{I^2} n^2.$$

Мы получаем, таким образом, бесчисленное множество значений критических сил, соответствующих различным формам искривления стержня.

С практической точки зрения интерес представляет лишь наименьшее значение критической силы, при котором происходит потеря устойчивости стержня.

Первый корень n=0 не дает решения задачи. При n=1 получаем наименьшее значение критической силы:

$$P_{\rm Kp} = \frac{\pi^2 E I_{\rm min}}{l^2}.$$
 (5)

Это и есть формула Эйлера. Критической силе, определяемой по формуле (5), соответствует изгиб стержня по синусоиде с одной полуволной:

$$y = A \sin\left(\frac{\pi}{l}z\right).$$

Следующие корни дают большие значения критической силы, и мы их рассматривать не будем. Им соответствует изгиб стержня по синусоиде с несколькими полуволнами, который получается в том случае, если изгиб по синусоиде с одной полуволной почему-либо невозможен, например из-за наличия промежуточных связей.

Следует обратить внимание на то, что постоянная A, а следовательно, и форма изогнутой оси стержня остались неопределенными.

Если применить для исследования продольного изгиба не приближенное, а точное дифференциальное уравнение изогнутой оси, то оказывается возможным определить не только величину критической силы, но и зависимость между сжимающей силой и прогибом стержня.

3. ВЛИЯНИЕ СПОСОБА ЗАКРЕПЛЕНИЯ КОНЦОВ СТЕРЖНЯ НА ВЕЛИЧИНУ КРИТИЧЕСКОЙ СИЛЫ

Чаще всего концы стержня закрепляют одним из четырех способов, показанных на рис. 4.

Первый способ – шарнирное закрепление обоих концов – рассмотрен нами при выводе формулы Эйлера.

При других способах закрепления обобщенная формула Эйлера для определения критической силы имеет вид

$$P_{\rm Kp} = \frac{\pi^2 E I_{\rm min}}{(\mu \cdot l)^2},\tag{6}$$

где μ – коэффициент приведения длины стержня, зависящий от способа закрепления концов стержня (см. рис. 4);

 $l_O = \mu l$ – приведенная длина стержня.

Чем меньше µ, тем больше критическая, а следовательно, и допускаемая нагрузка стержня. Например, нагрузка стержня, с двумя заделанными концами, может быть в 16 раз больше нагрузки стержня, с одним заделанным концом, поэтому там, где возможно, следует осуществлять жесткую заделку обоих концов стержня. Однако это не всегда можно осуществить на практике. Элементы, к которым прикрепляются концы рассматриваемого стержня, всегда более или менее упруго–податливы, что вносит некоторую неопределенность в расчет. Поэтому весьма часто даже при жестком соединении концов стержня с другими

элементами расчет в запас прочности ведут, предполагая шарнирное закрепление обоих концов.

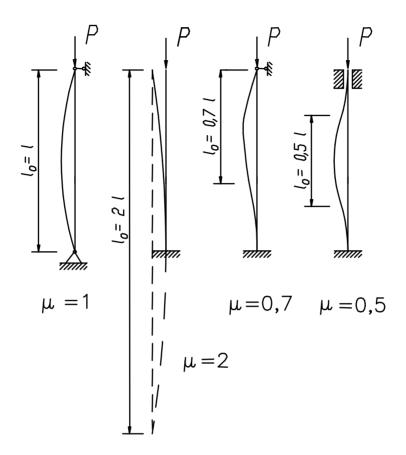


Рис. 4

4. ПРЕДЕЛЫ ПРИМЕНИМОСТИ ФОРМУЛЫ ЭЙЛЕРА

Формулой Эйлера не всегда можно пользоваться. При ее выводе мы пользовались приближенным дифференциальным уравнением изогнутой оси балки, вывод которого основан на законе Гука. Закон же Гука справедлив до тех пор, пока напряжения не превосходят предела пропорциональности.

Для того, чтобы установить пределы применимости формулы Эйлера, определим критическое напряжение, т.е. напряжение, возникающее в поперечном сечении стержня при действии критической нагрузки,

$$\sigma_{\rm Kp} = \frac{P_{\rm Kp}}{A} = \frac{\pi^2 E I_{\rm min}}{(\mu l)^2 A},\tag{7}$$

где A — площадь поперечного сечения стержня.

Но $i_{\min} = \sqrt{\frac{I_{\min}}{A}}$ — наименьший радиус инерции поперечного сечения стержня, поэтому формулу (7) можно записать в виде

$$\sigma_{\rm Kp} = \frac{\pi^2 E}{\left(\frac{\mu l}{i_{\rm min}}\right)^2}.$$

Величина $\frac{\mu l}{i_{\min}}$ характеризует влияние размеров стержня и способа закрепления концов; она называется гибкостью стержня и обозначается λ . Гибкость – величина безразмерная.

Таким образом, обозначая

$$\lambda = \frac{\mu l}{i_{\min}},$$

получаем

$$\sigma_{\rm Kp} = \frac{\pi^2 E}{\lambda^2}.$$
 (8)

Чтобы можно было пользоваться формулой Эйлера, необходимо удовлетворить следующему условию:

$$\sigma_{\rm KP} = \frac{\pi^2 E}{\lambda^2} \le \sigma_{\rm \Pi II}. \tag{9}$$

где $\sigma_{\Pi \Pi}$ — предел пропорциональности материала стержня. Записывая формулу (9) относительно гибкости, получаем условие применимости формулы Эйлера в виде

$$\lambda \ge \sqrt{\frac{\pi^2 E}{\sigma_{\Pi \Pi}}} \tag{10}$$

Вводя обозначение предельной гибкости $\lambda_{\Pi p} = \sqrt{\frac{\pi^2 E}{\sigma_{\Pi I I}}}$, получаем сле-

дующее условие применимости формулы Эйлера

$$\lambda \geq \lambda_{\Pi p}$$

Например, для стали Ст.3 $\sigma_{\Pi II} = 200 \ M\Pi a \ u$

$$\lambda_{\Pi p} = \sqrt{\frac{3,14^2 \cdot 2 \cdot 10^5}{200}} = 100.$$

Таким образом, для стержней из малоуглеродистой стали формула Эйлера применима, если их гибкость больше 100.

Аналогичным образом можно получить предельные гибкости для других материалов:

- для дерева (сосна) $\lambda_{\text{пр}} = 110$;
- для чугуна $\lambda_{np} = 80$.

5. ЭМПИРИЧЕСКАЯ ФОРМУЛА ДЛЯ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКИХ НАПРЯЖЕНИЙ

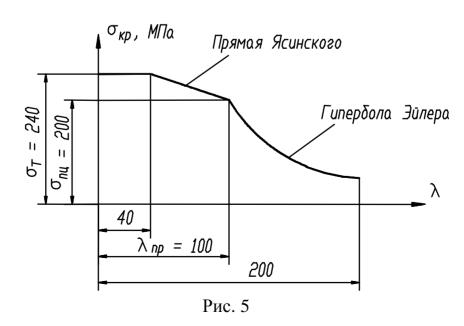
Если, как это очень часто случается на практике, гибкость стержней будет меньше предельной, то формула Эйлера становится неприменимой, так как критические напряжения превзойдут предел пропорциональности и закон Гука потеряет силу.

В этих случаях обычно пользуются следующей эмпирической формулой, полученной русским ученым Ф.С. Ясинским на основании многочисленных опытов, проведенных рядом исследователей, которая для стали и дерева имеет вид

$$\sigma_{KP} = a - b\lambda, \tag{11}$$

для чугуна

$$\sigma_{\rm Kp} = a - b\lambda + c\lambda^2, \tag{12}$$


где a, b и c – коэффициенты, зависящие от материала.

Для стали Ст.3 коэффициенты a и b равны: a = 310 МПа, b = 1,14 МПа.

Для дерева (сосна): a = 29,3 МПа, b = 0,194 МПа.

Для чугуна: a=776 МПа, b=12 МПа, $c=0{,}053$ МПа .

График зависимости критических напряжений от гибкости стержня для малоуглеродистой стали Ст.3 показан на рис. 5. Из рисунка видно, что при гибкости меньше 40 стержни на устойчивость рассчитывать не нужно.

6. ПРАКТИЧЕСКАЯ ФОРМУЛА ДЛЯ РАСЧЕТА НА УСТОЙЧИВОСТЬ

Вместо двух формул Эйлера и Ясинского, каждая из которых пригодна для определенного диапазона гибкостей, удобнее иметь одну формулу, которой можно было бы пользоваться при любой гибкости стержня.

Эта практическая формула имеет вид

$$\sigma = \frac{P}{A} \le \left[\sigma_{y}\right] \tag{13}$$

где $[\sigma_v]$ – допускаемое напряжение при расчете на устойчивость;

A – площадь поперечного сечения стержня без учета ослаблений (отверстий под болты, заклепки и т.п.).

$$\left[\sigma_{\mathbf{y}}\right] = \varphi\left[\sigma_{\mathbf{c}}\right] \tag{14}$$

где $[\sigma_c]$ – основное допускаемое напряжение на сжатие;

Ф – коэффициент уменьшения основного допускаемого напряжения (или коэффициент продольного изгиба).

Тогда формулу расчета на устойчивость можно записать в виде:

$$\sigma = \frac{P}{\mathbf{o} \cdot A} \le \left[\sigma_{\mathbf{C}}\right] \tag{15}$$

Основное допускаемое напряжение на сжатие $[\sigma_c]$ равно

$$[\sigma_{\rm c}] = \frac{\sigma_{\rm OII}}{n}$$

где $\sigma_{\rm OII}$ — опасное напряжение для материала, принимаемое равным пределу текучести для пластичных материалов или пределу прочности на сжатие для хрупких материалов.

Коэффициент продольного изгиба Ф равен (см. (14))

$$\varphi = \frac{\left[\sigma_{y}\right]}{\left[\sigma_{c}\right]} = \frac{\sigma_{kp}}{n_{y}\left[\sigma_{c}\right]}.$$

Величина ϕ зависит от материала и гибкости стержня и определяется по таблице (с. 12).

По формуле (15) производят следующие виды расчетов:

1. Проверка устойчивости стержня.

Заданы P, $[\sigma_c]$, l, размеры поперечного сечения.

- ullet Зная размеры, находим площадь A и минимальный радиус инерции i_{\min}
- Определяем гибкость стержня $\lambda = \frac{\mu l}{i_{\min}}$.
- По таблице находим коэффициент $\phi = \phi(\lambda)$.

•Проверяем устойчивость стержня: $\sigma = \frac{P}{\phi \cdot A} \leq [\sigma_{\mathbb{C}}].$

Гибкость, $\lambda = \frac{\mu l}{\mu l}$		Коэффиг	циенты ф	
$\lambda = \frac{\mu}{i_{\min}}$	Ст. 2 Ст. 3 Ст. 4	Ст. 5	Чугун	Дерево
0	1,00	1,00	1,00	1,00
10	0,99	0,98	0,97	0,99
20	0,96	0,95	0,91	0,97
30	0,94	0,92	0,81	0,93
40	0,92	0,89	0,69	0,87
50	0,89	0,86	0,57	0,80
60	0,86	0,82	0,44	0,71
70	0,81	0,76	0,34	0,60
80	0,75	0,70	0,26	0,48
90	0,69	0,62	0,20	0,38
100	0,60	0,51	0,16	0,31
110	0,52	0,43	_	0,25
120	0,45	0,36	_	0,22
130	0,40	0,33	_	0,18
140	0,36	0,29	_	0,16
150	0,32	0,26	_	0,14
160	0,29	0,24	_	0,12
170	0,26	0,21	_	0,11
180	0,23	0,19	_	0,10
190	0,21	0,17	_	0,09
200	0,19	0,16	_	0,08

2. Определение допускаемой нагрузки на стержень (грузоподъемность стержня).

Заданы $[\sigma_c]$, l, размеры поперечного сечения.

- ullet Зная размеры находим площадь A и минимальный радиус инерции i_{\min}
- Определяем гибкость стержня $\lambda = \frac{\mu l}{i_{\min}}$.
- По таблице находим коэффициент $\phi = \phi(\lambda)$.
- Определяем грузоподъемность стержня: $[P] = \varphi A[\sigma_C]$.
- 3. Подбор поперечного сечения стержня.

Заданы P, $[\sigma_c]$, l, форма сечения стержня.

В формуле (15) два неизвестных: A и ϕ . Коэффициент ϕ зависит от гибкости $\lambda = \frac{\mu l}{i_{\min}}$, i_{\min} — неизвестен.

Задачу решаем методом последовательных приближений:

- 1. Задаемся величиной коэффициента ϕ_1 (рекомендуемое значение $\phi_1 = 0.5$).
- 2. По формуле (15) определяем площадь поперечного сечения стержня $A \geq \frac{P}{\phi_1[\sigma_{\mathbb{C}}]}.$
- 3. Зная площадь, подбираем сечение (определяем размеры) и находим i_{\min} .
- 4. Вычисляем гибкость стержня $\lambda = \frac{\mu l}{i_{\min}}$.
- 5. По таблице находим новое значение коэффициента продольного изгиба ϕ_2 .
- 6. Если разница между ϕ_1 и ϕ_2 меньше 5 %, то расчет заканчиваем. В противном случае принимаем новое значение $\phi_1 = \frac{\phi_1 + \phi_2}{2}$ и расчет повторяем, начиная с пункта 2).

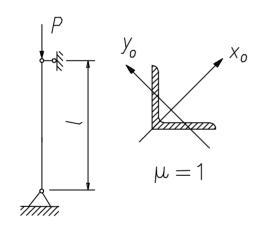


Рис. 6

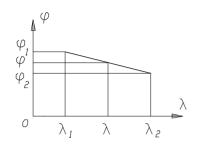
Пример 1. Для стойки, нагруженной продольной силой P, определить:

- 1) критическую силу;
- 2) допускаемую нагрузку на стойку;
- 3) коэффициент запаса устойчивости. Если $[\sigma] = 160$ МПа, l = 3 м. Стойка изготовлена из уголка $140{\times}140{\times}10$ мм.

Решение. Определяем по сортаменту геометри-ческие характеристики угол-ка, необходимые для расчета:

$$A = 27.3 \text{ cm}^2$$
, $I_{\text{min}} = I_{y_o} = 211 \text{ cm}^4$.
 $i_{\text{min}} = i_{y_o} = 2.78 \text{ cm}$.

2. Определяем критическую силу. Вычисляем гибкость стержня:


$$\lambda = \frac{\mu l}{i_{\text{min}}} = \frac{1 \cdot 3}{2,78 \cdot 10^{-2}} = 108 > \lambda_{\text{II}p} = 100.$$

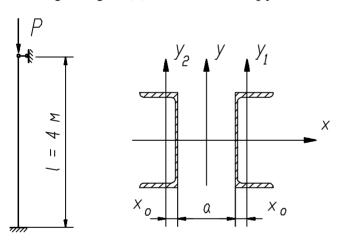
Определяем критические напряжения по формуле Эйлера:

$$P_{\text{KP}} = \frac{\pi^2 E I_{\text{min}}}{(\mu l)^2} = \frac{3.14^2 \cdot 2 \cdot 10^8 \cdot 211 \cdot 10^{-8}}{(1 \cdot 3)^2} = 461 \text{ kH}.$$

3. Определяем допускаемую нагрузку на стойку. Определяем коэффициент продольного изгиба по таблице (с. 12) для стали марки Ст. 3 и гибкости $\lambda = 108$.

По таблице находим для $\lambda_1=100, \ \phi_1=0,6;$ для $\lambda_2=110, \ \phi_2=0,52.$ Промежуточное значение определяем по линейной интерполяции:

$$\varphi = \varphi_1 - \frac{\varphi_1 - \varphi_2}{\lambda_2 - \lambda_1} (\lambda - \lambda_1),$$


$$\varphi = 0.6 - \frac{0.6 - 0.52}{110 - 100} (108 - 100) = 0.536.$$

$$[P] = \varphi_A[\sigma_c] = 0.536 \cdot 27.3 \cdot 10^{-4} \cdot 160 \cdot 10^3 = 234 \text{ kH}.$$

4. Находим коэффициент запаса устойчивости

$$n_{\rm y} = \frac{P_{\rm Kp}}{|P|} = \frac{461}{234} = 1,97.$$

Пример 2. Для стойки, нагруженной продольной силой P, определить:

- 1) размер a из условия равноустойчивости;
 - 2) критическую силу;
- 3) допускаемую нагрузку на стойку;
- 4) коэффициент запаса устойчивости.

Если $[\sigma_c] = 160 \text{ МПа.}$ Стойка изготовлена из дв

Стойка изготовлена из двух швеллеров № 16.

Рис. 7

Решение. Определяем по сортаменту геометрические характеристики швеллера, необходимые для расчета: $I_x^{/} = 747 \text{ cm}^4$, $I_{y_1}^{/} = 63,3 \text{ cm}^4$,

$$A^{\prime} = 18,1 \text{ cm}^2, x_o = 1,8 \text{ cm}.$$

1. Находим размер a из условия равноустойчивости.

Стержень равноустойчив, если гибкости в направлении осей x и y одинаковы:

$$\lambda = \frac{\mu l}{i_{\min}} \implies \frac{\mu l}{i_x} = \frac{\mu l}{i_y} \implies i_x = i_y \implies \sqrt{\frac{I_x}{A}} = \sqrt{\frac{I_y}{A}} \implies \underline{I_x = I_y}.$$

Вычислим моменты инерции относительно главных центральных осей:

$$I_x = 2I_x^{\prime} = 2 \cdot 747 = 1494 \text{ cm}^4.$$

$$I_y = 2 \left(I'_{y_1} + \left(\frac{a}{2} + x_o \right)^2 A' \right) = 2 \left(63, 3 + \left(\frac{a}{2} + 1, 8 \right)^2 \cdot 18, 1 \right).$$

Приравниваем моменты инерции

2
$$(63,3 + (\frac{a}{2} + 1,8)^2 \cdot 18,1) = 1494.$$

Решая, находим $a_1 = 8.7$ см, $a_2 = -15.9$ см.

Отрицательное значение нас не интересует, следовательно, a = 8.7 см.

2. Определяем критическую силу.

Вычисляем гибкость стержня $\lambda = \frac{\mu l}{i_{\min}}$.

Стержень равноустойчив, следовательно, $i_{\min}=i_x=i_y$, а $i_x=\sqrt{\frac{I_x}{A}}$.

Находим площадь стержня $A = 2A^{/} = 2.18,1 = 36,2$ см².

Тогда
$$i_{\min}=i_x=\sqrt{\frac{I_x}{A}}=\sqrt{\frac{1494}{36,2}}=6,42$$
 см и
$$\lambda=\frac{\mu l}{i_{\min}}=\frac{0,7\cdot 4}{6.42\cdot 10^{-2}}=43,6~<~\lambda_{\Pi p}=100\,.$$

Определяем критические напряжения по формуле Ясинского для стали

$$P_{\text{кр}} = \sigma_{\text{кр}} \cdot A = (a - b\lambda)A =$$

$$= (310 - 1.14 \cdot 43.6) \cdot 10^3 \cdot 36.2 \cdot 10^{-4} = 942.3 \text{ кH}.$$

3. Определяем допускаемую нагрузку на стойку.

Из условия устойчивости $\sigma = \frac{P}{\varphi A} \le [\sigma_c]$, получаем $[P] = \varphi A[\sigma_c]$,

где ϕ – коэффициент продольного изгиба (определяем по таблице (с.12) для стали марки Ст. 3 и гибкости λ = 43,6).

По таблице находим для $\lambda_1=40, \; \phi_1=0.92; \; для \; \lambda_2=50, \; \phi_2=0.89.$ Промежуточное значение определяем по линейной интерполяции:

$$\varphi = 0.92 - \frac{0.92 - 0.89}{50 - 40} (43.6 - 40) = 0.91$$
.

$$[P] = 0.91 \cdot 36.2 \cdot 10^{-4} \cdot 160 \cdot 10^{3} = 527.1$$
 кН.

4. Находим коэффициент запаса устойчивости:

$$n_{\rm y} = \frac{P_{\rm Kp}}{[P]} = \frac{942,3}{527,1} = 1,79.$$

Пример 3. Подобрать сечение стойки в виде двутавра из условия устойчивости. Материал стойки Ст.3, $[S_c] = 160 \text{ M}\Pi a$.

> Задачу решаем методом последовательных приближений.

Принимаем в первом приближении j = 0,4.

Принимаем в первом приолижении
$$J=0,4$$
.

1-я итерация
Определяем площадь поперечного сечения стойки:
$$A \ge \frac{P}{\phi[\sigma_{\mathbf{C}}]} = \frac{250}{0,4 \cdot 160 \cdot 10^3} = 3,91 \cdot 10^{-3} \,\mathrm{m}^2 = 39,1 \,\mathrm{cm}^2.$$

По сортаменту подбираем двутавр № 27 $(A = 40.2 \text{ cm}^2, i_{\min} = 2.54 \text{ cm}).$

Рис. 8
$$\lambda = \frac{\mu l}{i_{\min}} = \frac{2 \cdot 2,2}{2,54 \cdot 10^{-2}} = 173,23.$$

По таблице (с.12) находим коэффициент продольного изгиба ф.

Для $\lambda_1 = 170$ $\phi_1 = 0.26$; для $\lambda_2 = 180$ $\phi_2 = 0.23$. Промежуточное значение определяем по линейной интерполяции:

$$\varphi = 0.26 - \frac{0.26 - 0.23}{180 - 170} (173.23 - 170) = 0.25$$
.

Погрешность расчета

$$\delta = \frac{0.4 - 0.25}{0.4} 100\% = 37.5\% > 5\%$$
.

2-я итерация

Во втором приближении $\varphi = \frac{0.4 + 0.25}{2} = 0.325$.

Определяем площадь поперечного сечения стойки:

$$A \ge \frac{P}{\varphi[\sigma_c]} = \frac{250}{0.325 \cdot 160 \cdot 10^3} = 4.81 \cdot 10^{-3} \,\mathrm{m}^2 = 48.1 \,\mathrm{cm}^2.$$

По сортаменту подбираем двутавр № 30а ($A = 49.9 \text{ cm}^2$, $i_{\min} = 2.95 \text{ cm}$). Определяем гибкость стойки:

$$\lambda = \frac{\mu l}{i_{\min}} = \frac{2 \cdot 2,2}{2,95 \cdot 10^{-2}} = 149,15.$$

По таблице (с.12) находим коэффициент продольного изгиба ф.

Для $\lambda_1 = 140 ~\phi_1 = 0.36$; для $\lambda_2 = 150 ~\phi_2 = 0.32$. Промежуточное значение определяем по линейной интерполяции:

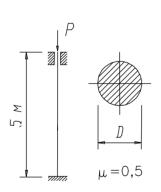
$$\varphi = 0.36 - \frac{0.36 - 0.32}{150 - 140} (149.15 - 140) = 0.323$$
.

Погрешность расчета:

$$\delta = \frac{0,325 - 0,323}{0,325} 100\% = 0,6\% < 5\%.$$

Окончательно принимаем сечение стойки в виде двутавра № 30а ($A=49.9~{\rm cm}^2,~i_{\rm min}=2.95~{\rm cm}$).

Напряжение в стержне:
$$S = \frac{P}{A} = \frac{250}{49.9 \cdot 10^{-4}} 10^{-3} = 50,1$$
 МПа.


Допускаемое напряжение на устойчивость $[\sigma_V] = \phi[\sigma] = 0.323 \cdot 160 = 51.68 \text{ M}\Pi a.$

Погрешность расчета:
$$\delta = \frac{51,68 - 50,1}{51,68} 100\% = 3,1\% < 5\%$$

Пример 4. Подобрать круглое сечение стойки, загруженной силой $P=200~{\rm kH},$ из условия устойчивости. Материал - дерево (сосна), $[\sigma_{\rm c}]=10~{\rm M}\Pi a.$ Задачу решаем методом последовательных приближений. Принимаем в первом приближении $\phi=0.7$.

1-я итерация

Определяем площадь поперечного сечения стойки:

$$A \ge \frac{P}{\varphi[\sigma_c]} = \frac{200}{0.7 \cdot 10 \cdot 10^3} = 2,86 \cdot 10^{-2} \,\mathrm{m}^2 = 286 \,\mathrm{cm}^2.$$

Определяем диаметр поперечного сечения стойки:

$$A = \frac{\pi D^2}{4} \Rightarrow D = \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{4 \cdot 286}{3,14}} = 19,1 \text{ cm}.$$

Радиус инерции:

Рис. 9

$$i_{\min} = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{\pi D^4}{64} \frac{4}{\pi D^2}} = \frac{D}{4} = \frac{19,1}{4} = 4,77 \text{ cm}.$$

Определяем гибкость стойки:

$$\lambda = \frac{\mu l}{i_{\text{min}}} = \frac{0.5 \cdot 5}{4.77 \cdot 10^{-2}} = 52.4.$$

По таблице (с.12) находим коэффициент продольного изгиба ф.

Для $\lambda_1 = 50~$ $\phi_1 = 0.8;$ для $\lambda_2 = 60~$ $\phi_2 = 0.71.$ Промежуточное значение определяем по линейной интерполяции:

$$\varphi = 0.8 - \frac{0.8 - 0.71}{60 - 50} (52.4 - 50) = 0.778$$
.

Погрешность расчета:

$$\delta = \frac{0,778 - 0,7}{0,778} 100 = 10\% > 5\%.$$

2-я итерация

Во втором приближении $\varphi = \frac{0.7 + 0.778}{2} = 0.739$.

Площадь поперечного сечения стойки:

$$A \ge \frac{P}{\varphi[\sigma_c]} = \frac{200}{0.739 \cdot 10 \cdot 10^3} = 2,71 \cdot 10^{-2} \,\mathrm{m}^2 = 271 \,\mathrm{cm}^2.$$

Диаметр поперечного сечения стойки:

$$D = \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{4 \cdot 271}{3,14}} = 18,6$$
 cm.

Радиус инерции:

$$i_{\min} = \frac{D}{4} = \frac{18,6}{4} = 4,65 \text{ cm}.$$

Определяем гибкость стойки:

$$\lambda = \frac{\mu l}{i_{\min}} = \frac{0.5 \cdot 5}{4.65 \cdot 10^{-2}} = 53.8.$$

По таблице (с.12) находим коэффициент продольного изгиба ϕ .

Для $\lambda_1 = 50~$ $\phi_1 = 0.8;$ для $\lambda_2 = 60~$ $\phi_2 = 0.71.$ Промежуточное значение определяем по линейной интерполяции:

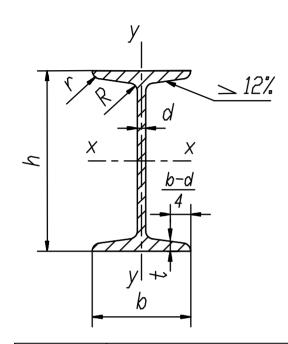
$$\varphi = 0.8 - \frac{0.8 - 0.71}{60 - 50} (53.8 - 50) = 0.766$$
.

Погрешность расчета:

$$\delta = \frac{0,766 - 0,739}{0,766} 100 = 3,5\% < 5\%$$

Окончательно принимаем диаметр D = 18,6 см.

Напряжения в стойке
$$\sigma = \frac{N}{A} = \frac{200}{271 \cdot 10^{-4}} \cdot 10^{-3} = 7,38$$
 МПа.


Допускаемые напряжения на устойчивость
$$[\sigma_y] = \phi[\sigma_c] = 0,766 \cdot 10 = 7,66$$
 МПа. $\sigma \approx [\sigma_y]$.

Погрешность расчета:
$$\delta = \frac{7,66-7,38}{7,66} 100 = 3,7\%$$
.

- 1. Степин П.А. Сопротивление материалов: Учеб. для немашиностроит. спец. вузов. 8-е изд. М.: Высш. шк., 1988. 367 с.: ил.
- 2. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. для вузов. М.: Высш. шк., 1995. 560 с.: ил.
- 3. Сопротивление материалов / Под ред. акад. АН УССР Г.С. Писаренко 5-е изд. Киев: Выща шк. Головное изд-во, 1986. 775 с.

ПРИЛОЖЕНИЕ

СОРТАМЕНТ ПРОКАТНОЙ СТАЛИ

Балки двутавровые (по ГОСТ 8239 – 72)

Обозначения:

h – высота балки; J – момент инерции;

b — ширина полки; W — момент сопротивления;

d – толщина стенки; i – радиус инерции;

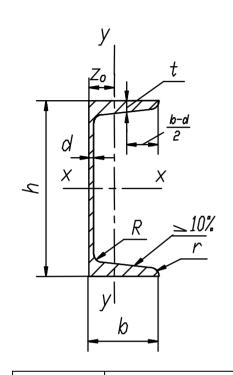

t — средняя толщина полки; S — статический момент полусечения.

Таблица П.1

Номер		Размер	оы, мм		Площадь сечения	J_x , cm ⁴	W_x , cm ³	i_x , cm	S_x , cm ³	J_y , cm 4	W_y , cm ³	i_y ,	Macca
профиля	h	b	d	t	A, cm ²								1 м, кг
1	2	3	4	5	6	7	8	9	10	11	12	13	14
10	100	55	4,5	7,2	12,0	198	39,7	4,06	23,0	17,9	6,49	1,22	9,46
12	120	64	4,8	7,3	14,7	350	58,4	4,88	33,7	27,9	8,72	1,38	11,5
14	140	73	4,9	7,5	17,4	572	81,7	5,73	46,8	41,9	11,5	1,55	13,7
16	160	81	5,0	7,8	20,2	873	109	6,57	62,3	58,6	14,5	1,70	15,9
18	180	90	5,1	8,1	23,4	1290	143	7,42	81,4	82,6	18,4	1,88	18,4
18a	180	100	5,1	8,3	25,4	1430	159	7,51	89,8	114	22,8	2,12	19,9

Окончание табл. П.1

1	2	3	4	5	6	7	8	9	10	11	12	13	14
20	200	100	5,2	8,4	26,8	1840	184	8,28	104	115	23,1	2,07	21,0
20a	200	110	5,2	8,6	28,9	2030	203	8,37	114	155	28,2	2,32	22,7
22	220	110	5,4	8,7	30,6	2550	232	9,13	131	157	28,6	2,27	24,0
22a	220	120	5,4	8,9	32,8	2790	254	9,22	143	206	34,3	2,50	25,8
24	240	115	5,6	9,5	34,8	3460	289	9,97	163	198	34,5	2,37	27,3
24a	240	125	5,6	9,8	37,5	3800	317	10,1	178	260	41,6	2,63	29,4
27	270	125	6,0	9,8	40,2	5010	371	11,2	210	260	41,5	2,54	31,5
27a	270	135	6,0	10,2	43,2	5500	407	11,3	229	337	50,0	2,80	33,9
30	300	135	6,5	10,2	46,5	7080	472	12,3	268	337	49,9	2,69	36,5
30a	300	145	6,5	10,7	49,9	7780	518	12,5	292	436	60,1	2,95	39,2
33	330	140	7,0	11,2	53,8	9840	597	13,5	339	419	59,9	2,79	42,2
36	360	145	7,5	12,3	61,9	13380	743	14,7	423	516	71,1	2,89	48,6
40	400	155	8,0	13,0	71,4	18930	947	16,3	540	666	85,9	3,05	56,1
45	450	160	8,6	14,2	83,0	27450	1220	18,2	699	807	101	3,12	65,2
50	500	170	9,5	15,2	97,8	39290	1570	20,0	905	1040	122	3,26	76,8
55	550	180	10,3	16,5	114	55150	2000	22,0	1150	1350	150	3,44	89,8
60	600	190	11,1	17,8	132	75450	2510	23,9	1450	1720	181	3,60	104
65	650	200	12,0	19,2	153	101400	3120	25,8	1800	2170	217	3,77	120
70	700	210	13,0	20,8	176	134600	3840	27,7	2230	2730	260	3,94	138
70a	700	210	15,0	24,0	202	152700	4360	27,5	2550	3240	309	4,01	158
70б	700	210	17,5	28,2	234	175370	5010	27,4	2940	3910	373	4,09	184

Швеллеры (по ГОСТ 8240 – 72)

Обозначения:

h – высота швеллера; J – момент инерции;

b — ширина полки; W — момент сопротивления;

d – толщина стенки; i – радиус инерции;

t — средняя толщина полки; S — статический момент полусечения;

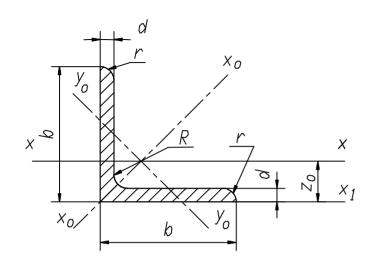

 z_o – расстояние от оси y до наружной грани стенки.

Таблица П.2

Номер профиля		Размер	ЭЫ, ММ		Площадь сечения	J_x , cm ⁴	W_x , cm ³	i_x , cm	S_x , cm ³	J_y , cm^4	W_y , cm ³	<i>i_y</i> , cm	z_o , cm	Macca
кимфофп	h	b	d	t	A, cm ²									1 м, кг
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
5	50	32	4,4	7,0	6,16	22,8	9,10	1,92	5,59	5,61	2,75	0,954	1,16	4,84
6,5	65	36	4,4	7,2	7,51	48,6	15,0	2,54	9,00	8,70	3,68	1,08	1,24	5,90
8	80	40	4,5	7,4	8,98	89,4	22,4	3,16	13,3	12,8	4,75	1,19	1,31	7,05
10	100	46	4,5	7,6	10,9	174	34,8	3,99	20,4	20,4	6,46	1,37	1,44	8,59
12	120	52	4,8	7,8	13,3	304	50,6	4,78	29,6	31,2	8,52	1,53	1,54	10,4
14	140	58	4,9	8,1	15,6	491	70,2	5,60	40,8	45,4	11,0	1,70	1,67	12,3

Окончание табл. П.2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
14a	140	62	4,9	8,7	17,0	545	77,8	5,66	45,1	57,5	13,3	1,84	1,87	13,3
16	160	64	5,0	8,4	18,1	747	93,4	6,42	54,1	63,3	13,8	1,87	1,80	14,2
16a	160	68	5,0	9,0	19,5	823	103	6,49	59,4	78,8	16,4	2,01	2,00	15,3
18	180	70	5,1	8,7	20,7	1090	121	7,24	69,8	86,0	17,0	2,04	1,94	16,3
18a	180	74	5,1	9,3	22,2	1190	132	7,32	76,1	105	20,0	2,18	2,13	17,4
20	200	76	5,2	9,0	23,4	1520	152	8,07	87,8	113	20,5	2,20	2,07	18,4
20a	200	80	5,2	9,7	25,2	1670	167	8,15	95,9	139	24,2	2,35	2,28	19,8
22	220	82	5,4	9,5	26,7	2110	192	8,89	110	151	25,1	2,37	2,21	21,0
22a	220	87	5,4	10,2	28,8	2330	212	8,99	121	187	30,0	2,55	2,46	22,6
24	240	90	5,6	10,0	30,6	2900	242	9,73	139	208	31,6	2,60	2,42	24,0
24a	240	95	5,6	10,7	32,9	3180	265	9,84	151	254	37,2	2,78	2,67	25,8
27	270	95	6,0	10,5	35,2	4160	308	10,9	178	262	37,3	2,73	2,47	27,7
30	300	100	6,5	11,0	40,5	5810	387	12,0	224	327	43,6	2,84	2,52	31,8
33	330	105	7,0	11,7	46,5	7980	484	13,1	281	410	51,8	2,97	2,59	36,5
36	360	110	7,5	12,6	53,4	10820	601	14,2	350	513	61,7	3,10	2,68	41,9
40	400	115	8,0	13,5	61,5	15220	761	15,7	444	642	73,4	3,23	2,75	48,3

Уголки равнобокие (по ГОСТ 8509 – 72)

Обозначения:

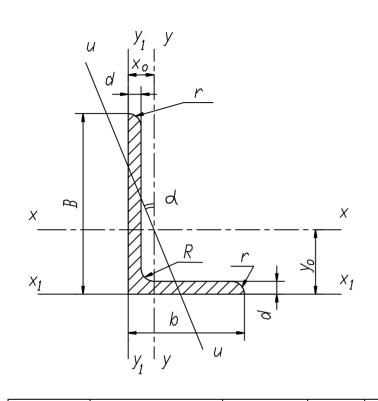
b – ширина полки;

d – толщина полки;

J – момент инерции;

i – радиус инерции;

 z_o – расстояние от центра тяжести до наружной грани полки.


Таблица П.3

Номер	Размер	оы, мм	Площадь сечения	J_x , cm ⁴	i_x , cm	$J_{x_o \max}$		$J_{y_o \min}$		J_{χ_1} ,	<i>z_o,</i> cm	Macca
профиля	b	d	A, cm ²			СМ	СМ	СМ	СМ	CM ⁴		1 м, кг
1	2	3	4	5	6	7	8	9	10	11	12	13
2	20	3	1,13	0,40	0,59	0,63	0,75	0,17	0,39	0,81	0,60	0,89
		4	1,46	0,50	0,58	0,78	0,73	0,22	0,38	1,09	0,64	1,15
2,5	25	3	1,43	0,81	0,75	1,29	0,95	0,34	0,49	1,57	0,73	1,12
		4	1,86	1,03	0,74	1,62	0,93	0,44	0,48	2,11	0,76	1,46
2,8	28	3	1,62	1,16	0,85	1,84	1,07	0,48	0,55	2,20	0,80	1,27
3,2	32	3	1,86	1,77	0,97	2,80	1,23	0,74	0,63	3,26	0,89	1,46
		4	2,43	2,26	0,96	3,58	1,21	0,94	0,62	4,39	0,94	1,91
3,6	36	3	2,10	2,56	1,10	4,06	1,39	1,06	0,71	4,64	0,99	1,65
		4	2,75	3,29	1,09	5,21	1,38	1,36	0,70	6,24	1,04	2,16

										Продол	жение	габл. П.3
1	2	3	4	5	6	7	8	9	10	11	12	13
4	40	3	2,35	3,55	1,23	5,63	1,55	1,47	0,79	6,35	1,09	1,85
		4	3,08	4,58	1,22	7,26	1,53	1,90	0,78	8,53	1,13	2,42
4,5	45	3	2,65	5,13	1,39	8,13	1,75	2,12	0,89	9,04	1,21	2,08
		4	3,48	6,63	1,38	10,5	1,74	2,74	0,89	12,1	1,26	2,73
		5	4,29	8,03	1,37	12,7	1,72	3,33	0,88	15,3	1,30	3,37
5	50	3	2,96	7,11	1,55	11,3	1,95	2,95	1,00	12,4	1,33	2,32
		4	3,89	9,21	1,54	14,6	1,94	3,80	0,99	16,6	1,38	3,05
		5	4,80	11,2	1,53	17,8	1,92	4,63	0,98	20,9	1,42	3,77
5,6	56	3,5	3,86	11,6	1,73	18,4	2,18	4,80	1,12	20,3	1,50	3,03
		4	4,38	13,1	1,73	20,8	2,18	5,41	1,11	23,3	1,52	3,44
		5	5,41	16,0	1,72	25,4	2,16	6,59	1,10	29,2	1,57	4,25
6,3	63	4	4,96	18,9	1,95	29,9	2,45	7,81	1,25	33,1	1,69	3,90
		5	6,13	23,1	1,94	36,6	2,44	9,52	1,25	41,5	1,74	4,81
		6	7,28	27,1	1,93	42,9	2,43	11,2	1,24	50,0	1,78	5,72
7	70	4,5	6,20	29,0	2,16	46,0	2,72	12,0	1,39	51,0	1,88	4,87
		5	6,86	31,9	2,16	50,7	2,72	13,2	1,39	56,7	1,90	5,38
		6	8,15	37,6	2,15	59,6	2,71	15,5	1,38	68,4	1,94	6,39
		7	9,42	43,0	2,14	68,2	2,69	17,8	1,37	80,1	1,99	7,39
		8	10,7	48,2	2,13	76,4	2,68	20,0	1,37	91,9	2,02	8,37
7,5	75	5	7,39	39,5	2,31	62,6	2,91	16,4	1,49	69,6	2,02	5,80
		6	8,78	46,6	2,30	73,9	2,90	19,3	1,48	83,9	2,06	6,89
		7	10,1	53,3	2,29	84,6	2,89	22,1	1,48	98,3	2,10	7,96
		8	11,5	59,8	2,28	94,6	2,87	24,8	1,47	113	2,15	9,02
		9	12,8	66,1	2,27	105	2,86	27,5	1,46	127	2,18	10,1

										Продол	жение	габл. П.3
1	2	3	4	5	6	7	8	9	10	11	12	13
8	80	5,5	8,63	52,7	2,47	83,6	3,11	21,8	1,59	93,2	2,17	6,78
		6	9,38	57,0	2,47	90,4	3,11	23,5	1,58	102	2,19	7,36
		7	10,8	65,3	2,45	104	3,09	27,0	1,58	119	2,23	8,51
		8	12,3	73,4	2,34	116	3,08	30,3	1,57	137	2,27	9,65
9	90	6	10,6	82,1	2,78	130	3,50	34,0	1,79	145	2,43	8,33
		7	12,3	94,3	2,77	150	3,49	38,9	1,78	169	2,47	9,64
		8	13,9	106	2,76	168	3,48	43,8	1,77	194	2,51	10,9
		9	15,6	118	2,75	186	3,46	48,6	1,77	219	2,55	12,2
10	100	6,5	12,8	122	3,09	193	3,88	50,7	1,99	214	2,68	10,1
		7	13,8	131	3,08	207	3,88	54,2	1,98	231	2,71	10,8
		8	15,6	147	3,07	233	3,87	60,9	1,98	265	2,75	12,2
		10	19,2	179	3,05	284	3,84	74,1	1,96	333	2,83	15,1
		12	22,8	209	3,03	331	3,81	86,9	1,95	402	2,91	17,9
		14	26,3	237	3,00	375	3,78	99,3	1,94	472	2,99	20,6
		16	29,7	264	2,98	416	3,74	112,0	1,94	542	3,06	23,3
11	110	7	15,2	176	3,40	279	4,29	72,7	2,19	308	2,96	11,9
		8	17,2	198	3,39	315	4,28	81,8	2,18	353	3,00	13,5
12,5	125	8	19,7	294	3,37	467	4,87	122	2,49	516	3,36	15,5
		9	22,0	327	3,86	520	4,86	135	2,48	582	3,40	17,3
		10	24,3	360	3,85	571	4,84	149	2,47	649	3,45	19,1
		12	28,9	422	3,82	670	4,82	174	2,46	782	3,53	22,7
		14	33,4	482	3,80	764	4,78	200	2,45	916	3,61	26,2
		16	37,8	539	3,78	853	4,75	224	2,44	1051	3,68	29,6
14	140	9	24,7	466	4,34	739	5,47	192	2,79	818	3,78	19,4
		10	27,3	512	4,33	814	5,46	211	2,78	911	3,82	21,5
		12	32,5	602	4,31	957	5,43	248	2,76	1097	3,90	25,5

										Окон	ичание т	габл. П.3
1	2	3	4	5	6	7	8	9	10	11	12	13
16	160	10	31,4	774	4,96	1229	6,25	319	3,19	1356	4,30	24,7
		11	34,4	844	4,95	1341	6,24	348	3,18	1494	4,35	27,0
		12	37,4	913	4,94	1450	6,23	376	3,17	1633	4,39	29,4
		14	43,3	1046	4,92	1662	6,20	431	3,16	1911	4,47	34,0
		16	49,1	1175	4,89	1866	6,17	485	3,14	2191	4,55	38,5
		18	54,8	1299	4,87	2061	6,13	537	3,13	2472	4,63	43,0
		20	60,4	1419	4,85	2248	6,10	589	3,12	2756	4,70	47,4
18	180	11	38,8	1216	5,60	1933	7,06	500	3,59	2128	4,85	30,5
		12	42,2	1317	5,59	2093	7,04	540	3,58	2324	4,89	33,1
20	200	12	47,1	1823	6,22	2896	7,84	749	3,99	3182	5,37	37,0
		13	50,9	1961	6,21	3116	7,83	805	3,98	3452	5,42	39,9
		14	54,6	2097	6,20	3333	7,81	861	3,97	3722	5,46	42,8
		16	62,0	2363	6,17	3755	7,78	970	3,96	4264	5,54	48,7
		20	76,5	2871	6,12	4560	7,72	1182	3,93	5355	5,70	60,1
		25	94,3	3466	6,06	5494	7,63	1438	3,91	6733	5,89	74,0
		30	111,5	4020	6,00	6351	7,55	1688	3,89	8130	6,07	87,6
22	220	14	60,4	2814	6,83	4470	8,60	1159	4,38	4941	5,93	47,4
		16	68,6	3175	6,81	5045	8,58	1306	4,36	5661	6,02	53,8
25	250	16	78,4	4717	7,76	7492	9,78	1942	4,98	8286	6,75	61,5
		18	87,7	5247	7,73	8337	9,75	2158	4,96	9342	6,83	68,9
		20	97,0	5765	7,71	9160	9,72	2370	4,94	10401	6,91	76,1
		22	106,1	6270	7,69	9961	9,69	2579	4,93	11464	7,00	83,3
		25	119,7	7006	7,65	11125	9,64	2887	4,91	13064	7,11	94,0
		28	133,1	7717	7,61	12244	9,59	3190	4,89	14674	7,23	104,5
		30	142,0	8177	7,59	12965	9,56	3389	4,89	14753	7,31	111,4

Уголки неравнобокие (по ГОСТ 8510 – 72)

Обозначения:

B — ширина большей полки;

b – ширина меньшей полки;

d – толщина полки;

J – момент инерции;

i – радиус инерции;

 x_o , y_o — расстояние от центра тяжести до наружных граней полок.

Таблица П.4

Номер профиля		меры,	MM	Площадь сечения	J_x , cm ⁴	<i>i_x</i> , cm	J_y , cm ⁴	<i>i_y</i> , cm	$J_{u\min\atop { m cm}^4}$	iu min см	Угол накло- на оси	J_{χ_1} , cm ⁴	J_{y_1} , cm^4	х _о , СМ	у ₀ , см	Масса 1 м, кг
	В	b	d	A, cm ²							u, tg α					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2,5/1,6	25	16	3	1,16	0,70	0,78	0,22	0,44	0,13	0,34	0,392	1,56	0,43	0,42	0,86	0,91
3,2/2	32	20	3	1,49	1,52	1,01	0,46	0,55	0,28	0,43	0,382	3,26	0,82	0,49	1,08	1,17
			4	1,94	1,93	1,00	0,57	0,54	0,35	0,43	0,374	4,38	1,12	0,53	1,12	1,52
4/2,5	40	25	3	1,89	3,06	1,27	0,93	0,70	0,56	0,54	0,385	6,37	1,58	0,59	1,32	1,48
			4	2,47	3,93	1,26	1,18	0,69	0,71	0,54	0,381	8,53	2,15	0,63	1,37	1,94

													Прод	долже	ние та	бл. П.4
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
4,5/2,8	45	28	3	2,14	4,41	1,43	1,32	0,79	0,79	0,61	0,382	9,02	2,20	0,64	1,47	1,68
			4	2,80	5,68	1,42	1,69	0,78	1,02	0,60	0,379	12,1	2,98	0,68	1,51	2,20
5/3,2	50	32	3	2,42	6,17	1,60	1,99	0,91	1,18	0,70	0,403	12,4	3,26	0,72	1,60	1,90
			4	3,17	7,98	1,59	2,56	0,90	1,52	0,69	0,401	16,6	4,42	0,76	1,65	2,49
5,6/3,6	56	36	3,5	3,16	10,1	1,79	3,30	1,02	1,95	0,79	0,407	20,3	5,43	0,82	1,80	2,48
			4	3,58	11,4	1,78	3,70	1,02	2,19	0,78	0,406	23,2	6,25	0,84	1,82	2,81
			5	4,41	13,8	1,77	4,48	1,01	2,66	0,78	0,404	29,2	7,91	0,88	1,86	3,46
6,3/4	63	40	4	4,04	16,3	2,01	5,16	1,13	3,07	0,87	0,397	33,0	8,51	0,91	2,03	3,17
			5	4,98	19,9	2,00	6,26	1,12	3,73	0,86	0,396	41,4	10,8	0,95	2,08	3,91
			6	5,90	23,3	1,99	7,28	1,11	4,36	0,86	0,393	49,9	13,1	0,99	2,12	4,63
			8	7,68	29,6	1,96	9,15	1,09	5,58	0,85	0,386	66,9	17,9	1,07	2,20	6,03
7/4,5	70	45	4,5	5,07	25,3	2,23	8,25	1,28	4,88	0,98	0,407	51,0	13,6	1,03	2,25	3,98
			5	5,59	27,8	2,23	9,05	1,27	5,34	0,98	0,406	56,7	15,2	1,05	2,28	4,39
7,5/5	75	50	5	6,11	34,8	2,39	12,5	1,43	7,24	1,09	0,436	69,7	20,8	1,17	2,39	4,79
			6	7,25	40,9	2,38	14,6	1,42	8,48	1,08	0,435	83,9	25,2	1,21	2,44	5,69
			8	9,47	52,4	2,35	18,5	1,40	10,9	1,07	0,430	112	34,2	1,29	2,52	7,43
8/5	80	50	5	6,36	41,6	2,56	12,7	1,41	7,58	1,09	0,387	84,6	20,8	1,13	2,60	4,99
			6	7,55	49,0	2,55	14,8	1,40	8,88	1,08	0,386	102	25,2	1,17	2,65	5,92
9/5,6	90	56	5,5	7,86	65,3	2,88	19,7	1,58	11,8	1,22	0,384	132	32,2	1,26	2,92	6,17
			6	8,54	70,6	2,88	21,2	1,58	12,7	1,22	0,384	145	35,2	1,28	2,95	6,70
			8	11,18	90,9	2,85	27,1	1,56	16,3	1,21	0,380	194	47,8	1,36	3,04	8,77
10/6,3	100	63	6	9,59	98,3	3,20	30,6	1,79	18,2	1,38	0,393	198	49,9	1,42	3,23	7,53
			7	11,1	113	3,19	35,0	1,78	20,8	1,37	0,392	232	58,7	1,46		8,70
			8	12,6	127	3,18	39,2	1,77	23,4	1,36	0,391	266	67,6	1,50	3,32	9,78
			10	15,5	154	3,15	47,1	1,75	28,3	1,35	0,387	333	85,8	1,58	3,40	12,1

													O	конча	ние та	бл. П.4
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
11/7	110	70	6,5	11,4	142	3,53	45,6	2,00	26,9	1,53	0,402	286	74,3	1,58	3,55	8,98
			7	12,3	152	3,52	48,7	1,99	28,8	1,53	0,402	309	80,3	1,60	3,57	9,64
			8	13,9	172	3,51	54,6	1,98	32,3	1,52	0,400	353	92,3	1,64	3,61	10,9
12,5/8	125	80	7	14,1	227	4,01	73,7	2,29	43,4	1,76	0,407	452	119	1,80	4,01	11,0
			8	16,0	256	4,00	83,0	2,28	48,8	1,75	0,406	518	137	1,84	4,05	12,5
			10	19,7	312	3,98	100	2,26	59,3	1,74	0,404	649	173	1,92	4,14	15,5
			12	23,4	365	3,95	117	2,24	69,5	1,72	0,400	781	210	2,00	4,22	18,3
14/9	140	90	8	18,0	364	4,49	120	2,58	70,3	1,98	0,411	727	204	2,03	4,49	14,1
			10	22,2	444	4,47	146	2,56	85,5	1,96	0,409	911	245	2,12	4,58	17,5
16/10	160	100	9	22,9	606	5,15	186	2,85	110	2,20	0,391	1221	300	2,23	5,19	18,0
			10	25,3	667	5,13	204	2,84	121	2,19	0,390	1359	335	2,28	5,23	19,8
			12	30,0	784	5,11	239	2,82	142	2,18	0,388	1634	405	2,36	5,32	23,6
			14	34,7	897	5,08	272	2,80	162	2,16	0,385	1910	477	2,43	5,40	27,3
18/11	180	110	10	28,3	952	5,80	276	3,12	165	2,42	0,375	1933	444	2,44	5,88	22,2
			12	33,7	1123	5,77	324	3,10	194	2,40	0,374	2324	537	2,52	5,97	26,4
20/12,5	200	125	11	34,9	1449	6,45	446	3,58	264	2,75	0,392	2920	718	2,79	6,50	27,4
			12	37,9	1568	6,43	482	3,57	285	2,74	0,392	3189	786	2,83	6,54	29,7
			14	43,9	1801	6,41	551	3,54	327	2,73	0,390	3726	922	2,91	6,62	34,4
			16	49,8	2026	6,38	617	3,52	367	2,72	0,388	4264	1061	2,99	6,71	39,1
25/16	250	160	12	48,3	3147	8,07	1032	4,62	604	3,54	0,410	6212	1634	3,53	7,97	37,9
			16	63,6	4091	8,02	1333	4,58	781	3,50	0,408	8308	2200	3,69	8,14	49,9
			18	71,1	4545	7,99	1475	4,56	896	3,49	0,407	9358	2487	3,77	8,23	55,8
			20	78,5	4987	7,97	1613	4,53	949	3,48	0,405	10410	2776	3,85	8,31	61,7

РАСЧЕТ НА УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ

Составители

Чупин Владимир Васильевич Черногубов Дмитрий Евгеньевич

Редактор И.В. Коршунова

 Подписано в печать 05.06.2001
 Формат 60х84 1/16

 Бумага типографская
 Офсетная печать
 Усл. печ. л. 1,86

 Уч.-изд. л. 1,50
 Тираж 100
 Заказ 167

Издательство УГТУ–УПИ 620002, Екатеринбург, ул. Мира, 19

Ризограф филиала ГОУ УГТУ-УПИ в г. Первоуральске 623101, Свердловская обл., г. Первоуральск, пр. Космонавтов, 1